home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Personal Computer World 2009 February
/
PCWFEB09.iso
/
Software
/
Resources
/
Chat & Communication
/
Digsby build 37
/
digsby_setup.exe
/
lib
/
random.pyo
(
.txt
)
< prev
next >
Wrap
Python Compiled Bytecode
|
2008-10-13
|
15KB
|
557 lines
# Source Generated with Decompyle++
# File: in.pyo (Python 2.5)
from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from binascii import hexlify as _hexlify
__all__ = [
'Random',
'seed',
'random',
'uniform',
'randint',
'choice',
'sample',
'randrange',
'shuffle',
'normalvariate',
'lognormvariate',
'expovariate',
'vonmisesvariate',
'gammavariate',
'gauss',
'betavariate',
'paretovariate',
'weibullvariate',
'getstate',
'setstate',
'jumpahead',
'WichmannHill',
'getrandbits',
'SystemRandom']
NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2)
TWOPI = 2 * _pi
LOG4 = _log(4)
SG_MAGICCONST = 1 + _log(4.5)
BPF = 53
RECIP_BPF = 2 ** (-BPF)
import _random
class Random(_random.Random):
VERSION = 2
def __init__(self, x = None):
self.seed(x)
self.gauss_next = None
def seed(self, a = None):
if a is None:
try:
a = long(_hexlify(_urandom(16)), 16)
except NotImplementedError:
import time as time
a = long(time.time() * 256)
except:
None<EXCEPTION MATCH>NotImplementedError
None<EXCEPTION MATCH>NotImplementedError
super(Random, self).seed(a)
self.gauss_next = None
def getstate(self):
return (self.VERSION, super(Random, self).getstate(), self.gauss_next)
def setstate(self, state):
version = state[0]
if version == 2:
(version, internalstate, self.gauss_next) = state
super(Random, self).setstate(internalstate)
else:
raise ValueError('state with version %s passed to Random.setstate() of version %s' % (version, self.VERSION))
def __getstate__(self):
return self.getstate()
def __setstate__(self, state):
self.setstate(state)
def __reduce__(self):
return (self.__class__, (), self.getstate())
def randrange(self, start, stop = None, step = 1, int = int, default = None, maxwidth = 0x1L << BPF):
istart = int(start)
if istart != start:
raise ValueError, 'non-integer arg 1 for randrange()'
if stop is default:
if istart > 0:
if istart >= maxwidth:
return self._randbelow(istart)
return int(self.random() * istart)
raise ValueError, 'empty range for randrange()'
istop = int(stop)
if istop != stop:
raise ValueError, 'non-integer stop for randrange()'
width = istop - istart
if step == 1 and width > 0:
if width >= maxwidth:
return int(istart + self._randbelow(width))
return int(istart + int(self.random() * width))
if step == 1:
raise ValueError, 'empty range for randrange() (%d,%d, %d)' % (istart, istop, width)
istep = int(step)
if istep != step:
raise ValueError, 'non-integer step for randrange()'
if istep > 0:
n = (width + istep - 1) // istep
elif istep < 0:
n = (width + istep + 1) // istep
else:
raise ValueError, 'zero step for randrange()'
if n <= 0:
raise ValueError, 'empty range for randrange()'
if n >= maxwidth:
return istart + istep * self._randbelow(n)
return istart + istep * int(self.random() * n)
def randint(self, a, b):
return self.randrange(a, b + 1)
def _randbelow(self, n, _log = _log, int = int, _maxwidth = 0x1L << BPF, _Method = _MethodType, _BuiltinMethod = _BuiltinMethodType):
try:
getrandbits = self.getrandbits
except AttributeError:
pass
if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
k = int(1.00001 + _log(n - 1, 2))
r = getrandbits(k)
while r >= n:
r = getrandbits(k)
return r
if n >= _maxwidth:
_warn('Underlying random() generator does not supply \nenough bits to choose from a population range this large')
return int(self.random() * n)
def choice(self, seq):
return seq[int(self.random() * len(seq))]
def shuffle(self, x, random = None, int = int):
if random is None:
random = self.random
for i in reversed(xrange(1, len(x))):
j = int(random() * (i + 1))
x[i] = x[j]
x[j] = x[i]
def sample(self, population, k):
n = len(population)
if k <= k:
pass
elif not k <= n:
raise ValueError, 'sample larger than population'
random = self.random
_int = int
result = [
None] * k
setsize = 21
if k > 5:
setsize += 4 ** _ceil(_log(k * 3, 4))
if n <= setsize or hasattr(population, 'keys'):
pool = list(population)
for i in xrange(k):
j = _int(random() * (n - i))
result[i] = pool[j]
pool[j] = pool[n - i - 1]
else:
try:
selected = set()
selected_add = selected.add
for i in xrange(k):
j = _int(random() * n)
while j in selected:
j = _int(random() * n)
selected_add(j)
result[i] = population[j]
except (TypeError, KeyError):
if isinstance(population, list):
raise
return self.sample(tuple(population), k)
return result
def uniform(self, a, b):
return a + (b - a) * self.random()
def normalvariate(self, mu, sigma):
random = self.random
while None:
u1 = random()
u2 = 1 - random()
z = NV_MAGICCONST * (u1 - 0.5) / u2
zz = z * z / 4
if zz <= -_log(u2):
break
continue
continue
return mu + z * sigma
def lognormvariate(self, mu, sigma):
return _exp(self.normalvariate(mu, sigma))
def expovariate(self, lambd):
random = self.random
u = random()
while u <= 1e-07:
u = random()
return -_log(u) / lambd
def vonmisesvariate(self, mu, kappa):
random = self.random
if kappa <= 1e-06:
return TWOPI * random()
a = 1 + _sqrt(1 + 4 * kappa * kappa)
b = (a - _sqrt(2 * a)) / 2 * kappa
r = (1 + b * b) / 2 * b
while None:
u1 = random()
z = _cos(_pi * u1)
f = (1 + r * z) / (r + z)
c = kappa * (r - f)
u2 = random()
if u2 < c * (2 - c) or u2 <= c * _exp(1 - c):
break
continue
continue
u3 = random()
if u3 > 0.5:
theta = mu % TWOPI + _acos(f)
else:
theta = mu % TWOPI - _acos(f)
return theta
def gammavariate(self, alpha, beta):
if alpha <= 0 or beta <= 0:
raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
random = self.random
if alpha > 1:
ainv = _sqrt(2 * alpha - 1)
bbb = alpha - LOG4
ccc = alpha + ainv
while None:
u1 = random()
if u1 < u1:
pass
elif not u1 < 1:
continue
u2 = 1 - random()
v = _log(u1 / (1 - u1)) / ainv
x = alpha * _exp(v)
z = u1 * u1 * u2
r = bbb + ccc * v - x
if r + SG_MAGICCONST - 4.5 * z >= 0 or r >= _log(z):
return x * beta
continue
continue
alpha > 1
if alpha == 1:
u = random()
while u <= 1e-07:
u = random()
return -_log(u) * beta
else:
while None:
u = random()
b = (_e + alpha) / _e
p = b * u
if p <= 1:
x = p ** (1 / alpha)
else:
x = -_log((b - p) / alpha)
u1 = random()
if p > 1:
if u1 <= x ** (alpha - 1):
break
if u1 <= _exp(-x):
break
continue
continue
return x * beta
return None
def gauss(self, mu, sigma):
random = self.random
z = self.gauss_next
self.gauss_next = None
if z is None:
x2pi = random() * TWOPI
g2rad = _sqrt(-2 * _log(1 - random()))
z = _cos(x2pi) * g2rad
self.gauss_next = _sin(x2pi) * g2rad
return mu + z * sigma
def betavariate(self, alpha, beta):
y = self.gammavariate(alpha, 1)
if y == 0:
return 0
else:
return y / (y + self.gammavariate(beta, 1))
def paretovariate(self, alpha):
u = 1 - self.random()
return 1 / pow(u, 1 / alpha)
def weibullvariate(self, alpha, beta):
u = 1 - self.random()
return alpha * pow(-_log(u), 1 / beta)
class WichmannHill(Random):
VERSION = 1
def seed(self, a = None):
if a is None:
try:
a = long(_hexlify(_urandom(16)), 16)
except NotImplementedError:
import time
a = long(time.time() * 256)
except:
None<EXCEPTION MATCH>NotImplementedError
None<EXCEPTION MATCH>NotImplementedError
if not isinstance(a, (int, long)):
a = hash(a)
(a, x) = divmod(a, 30268)
(a, y) = divmod(a, 30306)
(a, z) = divmod(a, 30322)
self._seed = (int(x) + 1, int(y) + 1, int(z) + 1)
self.gauss_next = None
def random(self):
(x, y, z) = self._seed
x = 171 * x % 30269
y = 172 * y % 30307
z = 170 * z % 30323
self._seed = (x, y, z)
return (x / 30269 + y / 30307 + z / 30323) % 1
def getstate(self):
return (self.VERSION, self._seed, self.gauss_next)
def setstate(self, state):
version = state[0]
if version == 1:
(version, self._seed, self.gauss_next) = state
else:
raise ValueError('state with version %s passed to Random.setstate() of version %s' % (version, self.VERSION))
def jumpahead(self, n):
if not n >= 0:
raise ValueError('n must be >= 0')
(x, y, z) = self._seed
x = int(x * pow(171, n, 30269)) % 30269
y = int(y * pow(172, n, 30307)) % 30307
z = int(z * pow(170, n, 30323)) % 30323
self._seed = (x, y, z)
def __whseed(self, x = 0, y = 0, z = 0):
if type(y) == type(y) and type(z) == type(z):
pass
elif not type(z) == int:
raise TypeError('seeds must be integers')
if x == x and y == y:
pass
elif y == z:
import time
t = long(time.time() * 256)
t = int(t & 16777215 ^ t >> 24)
(t, x) = divmod(t, 256)
(t, y) = divmod(t, 256)
(t, z) = divmod(t, 256)
if not z:
pass
self._seed = (None, 1 if not x else 1, 1)
self.gauss_next = None
def whseed(self, a = None):
if a is None:
self._WichmannHill__whseed()
return None
a = hash(a)
(a, x) = divmod(a, 256)
(a, y) = divmod(a, 256)
(a, z) = divmod(a, 256)
if not (x + a) % 256:
pass
x = 1
if not (y + a) % 256:
pass
y = 1
if not (z + a) % 256:
pass
z = 1
self._WichmannHill__whseed(x, y, z)
class SystemRandom(Random):
def random(self):
return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
def getrandbits(self, k):
if k <= 0:
raise ValueError('number of bits must be greater than zero')
if k != int(k):
raise TypeError('number of bits should be an integer')
bytes = (k + 7) // 8
x = long(_hexlify(_urandom(bytes)), 16)
return x >> bytes * 8 - k
def _stub(self, *args, **kwds):
pass
seed = jumpahead = _stub
def _notimplemented(self, *args, **kwds):
raise NotImplementedError('System entropy source does not have state.')
getstate = setstate = _notimplemented
def _test_generator(n, func, args):
import time
print n, 'times', func.__name__
total = 0
sqsum = 0
smallest = 1e+10
largest = -1e+10
t0 = time.time()
for i in range(n):
x = func(*args)
total += x
sqsum = sqsum + x * x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print round(t1 - t0, 3), 'sec,',
avg = total / n
stddev = _sqrt(sqsum / n - avg * avg)
print 'avg %g, stddev %g, min %g, max %g' % (avg, stddev, smallest, largest)
def _test(N = 2000):
_test_generator(N, random, ())
_test_generator(N, normalvariate, (0, 1))
_test_generator(N, lognormvariate, (0, 1))
_test_generator(N, vonmisesvariate, (0, 1))
_test_generator(N, gammavariate, (0.01, 1))
_test_generator(N, gammavariate, (0.1, 1))
_test_generator(N, gammavariate, (0.1, 2))
_test_generator(N, gammavariate, (0.5, 1))
_test_generator(N, gammavariate, (0.9, 1))
_test_generator(N, gammavariate, (1, 1))
_test_generator(N, gammavariate, (2, 1))
_test_generator(N, gammavariate, (20, 1))
_test_generator(N, gammavariate, (200, 1))
_test_generator(N, gauss, (0, 1))
_test_generator(N, betavariate, (3, 3))
_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
jumpahead = _inst.jumpahead
getrandbits = _inst.getrandbits
if __name__ == '__main__':
_test()